Normdf: Difference between revisions
imported>Jeremy (Importing text file) |
imported>Jeremy (Importing text file) |
||
Line 7: | Line 7: | ||
This distribution is used for many data types including physical attributes and sums of quantities. It is a symmetric distribution and the variance can be smaller, equal, or larger than the mean. | This distribution is used for many data types including physical attributes and sums of quantities. It is a symmetric distribution and the variance can be smaller, equal, or larger than the mean. | ||
INPUTS | ====INPUTS==== | ||
* function = [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the functionality to be used. Note that the function recognizes the first letter of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ]. | * '''function''' = [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the functionality to be used. Note that the function recognizes the first letter of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ]. | ||
* x = matrix in which the sample data is stored, in the interval (-inf,inf). | * '''x''' = matrix in which the sample data is stored, in the interval (-inf,inf). | ||
* for function=quantile - matrix with values in the interval (0,1). | * '''for''' function=quantile - matrix with values in the interval (0,1). | ||
* for function=random - vector indicating the size of the random matrix to create. | * '''for''' function=random - vector indicating the size of the random matrix to create. | ||
* a = mode/location parameter (real). | * '''a''' = mode/location parameter (real). | ||
* b = scale parameter (real and positive). | * '''b''' = scale parameter (real and positive). | ||
'''Note''': If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs to the largest input using the RESIZE function. | '''Note''': If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs to the largest input using the RESIZE function. | ||
'''Note''': Functions will typically allow input values outside of the acceptable range to be passed but such values will return NaN in the results. | '''Note''': Functions will typically allow input values outside of the acceptable range to be passed but such values will return NaN in the results. |
Revision as of 20:57, 2 September 2008
Purpose
Normal / Gaussian distribution.
Synopsis
- prob = normdf(function,x,a,b)
Description
Estimates cumulative distribution function (cumulative, cdf), probability density function (density, pdf), quantile (inverse of cdf), or random numbers for a Normal distribution. This distribution is used for many data types including physical attributes and sums of quantities. It is a symmetric distribution and the variance can be smaller, equal, or larger than the mean.
INPUTS
- function = [ {'cumulative'} | 'density' | 'quantile' | 'random' ], defines the functionality to be used. Note that the function recognizes the first letter of each string so that the string could be: [ 'c' | 'd' | 'q' | 'r' ].
- x = matrix in which the sample data is stored, in the interval (-inf,inf).
- for function=quantile - matrix with values in the interval (0,1).
- for function=random - vector indicating the size of the random matrix to create.
- a = mode/location parameter (real).
- b = scale parameter (real and positive).
Note: If inputs (x, a, and b) are not equal in size, the function will attempt to resize all inputs to the largest input using the RESIZE function. Note: Functions will typically allow input values outside of the acceptable range to be passed but such values will return NaN in the results.
Examples
Cumulative:
>> prob = normdf('c',[1.9600 2.5758]) ans =
0.9750 0.9950
>> x = -5:.1:5; >> plot(x,normdf('c',x,0,1)), vline([ 0 ; normdf('q',[0.975; 0.995],0,1)])
Density:
>> prob = normdf('d',[1.9600 2.5758],0,1) ans =
0.0584 0.0145
>> x = -5:.1:5; >> plot(x,normdf('d',x,0,1)), vline([0; normdf('q',[0.975; 0.995],0,1)])
Quantile:
>> ans =
1.9600 2.5758
Random:
>> prob = normdf('r',[4 1],0,1) ans =
-0.4326 -1.6656 0.1253 0.2877
See Also
betadr, cauchydf, chidf, expdf, gammadf, gumbeldf, laplacedf, logisdf, lognormdf, paretodf, raydf, triangledf, unifdf, weibulldf